Construction of 3D Mandelbrot Set and Julia Set
نویسندگان
چکیده
منابع مشابه
Hypercomputing the Mandelbrot Set?
The Mandelbrot set is an extremely well-known mathematical object that can be described in a quite simple way but has very interesting and non-trivial properties. This paper surveys some results that are known concerning the (non-)computability of the set. It considers two models of decidability over the reals (which are treated much more thoroughly and technically in [1], [2], [3] and [4] amon...
متن کاملParametric 2-dimensional L systems and recursive fractal images: Mandelbrot set, Julia sets and biomorphs
متن کامل
The Hausdorff Dimension of the Boundary of the Mandelbrot Set and Julia Sets
It is shown that the boundary of the Mandelbrot set M has Hausdorff dimension two and that for a generic c ∈ ∂M , the Julia set of z 7→ z + c also has Hausdorff dimension two. The proof is based on the study of the bifurcation of parabolic periodic points.
متن کاملInstability of the Mandelbrot Set
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملHomeomorphisms of the Mandelbrot Set
On subsets of the Mandelbrot set, EM ⊂M, homeomorphisms are constructed by quasi-conformal surgery. When the dynamics of quadratic polynomials is changed piecewise by a combinatorial construction, a general theorem yields the corresponding homeomorphism h : EM → EM in the parameter plane. Each h has two fixed points in EM , and a countable family of mutually homeomorphic fundamental domains. Po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/14920-3514